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Interlaboratory Studies:

The Scenario

� Each of p laboratories makes repeated mea-

surements of m quantities (perhaps corre-

sponding to di�erent concentrations of a

chemical analyte).

� The number of measurements made can

di�er among the laboratories.

� The measurement variability may depend

on the material being measured (perhaps

as an increasing function of concentration

or level).

� The within-laboratory variabilities may dif-

fer (often, though, they are assumed to be

equal).
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Interlaboratory Studies:

Some questions

� How should one estimate `consensus' val-

ues of the quantities measured?

� What is the between-laboratory variability

(reproducibility)?

� What is the within-laboratory variability (re-

peatability)? How do they compare?

� How should we look for outliers?
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Why Interlaboratory Studies?

� Interlaboratory studies are primarily performed

for one of two reasons:

1. Validating a measurement method or

standard material

2. Assessing the pro�ciency of

measurement laboratories.
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Outline

� A single material measured by multiple lab-

oratories { one-way random model (het-

eroscedastic and unbalanced)

{ Likelihood Analysis

{ Bayesian Model and Credible Regions

{ Example

� Some results for two-way models.
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Dietary Fiber in Apricots

Li and Cardozo (1994)

Lab. xi s2i ni
1 25.32 0.37 2
2 26.72 0.62 2

3 27.89 0.35 2
4 27.70 1.85 2
5 27.42 0.61 2
6 24.30 0.21 2
7 27.11 0.37 2
8 27.28 0.09 2
9 25.37 0.08 2

Mean: �x= 26:567

Weighted Means:

MP = 26:472
GD = 26:164

ANOVA = 26:420
MLE = 27:275

6



Statistical Framework:

One-Way, Unbalanced, Heteroscedastic

Random-E�ects ANOVA

� Laboratory sample means xi distributed in-

dependently normal with mean � and vari-

ance �2+ �2i , where �
2
i = �2i =ni.

� Expected mean for ith laboratory is also

normal, with mean � and variance �2.

� Su�cient statistics xi and t2i = s2i =ni.

If xij denotes the jth measurement from the

ith lab, then

xij = �+ bi+ eij;

where bi � N(0; �2) and eij = N(0; �2i ); mutu-

ally independent.
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Maximum Likelihood

(Cochran, 1937)

Let !i = 1=(�2+�2i ), �i = ni�1, and determine

�̂, �̂2i , and �̂ to satisfy

(Ai) !i � !2i (xi � �)2+ �i

�
1
�2i
� t2i

�4i

�
= 0

(B)
Pk

i=1 !
2
i (xi � �)2 =

Pk
i=1 !i

(C) �=
Pk
i=1!ixiPk
i=1!i

Note that (B) may have multiple roots. Cochran

(1937) proposed setting �2i = t2i and solving

(B) for �2, then using (C).
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ML Equations

�=

Pp
i=1 
ixiP

i 
i
=

Pp
i=1 !ixiP

i !i

�2 =

Pp
i=1 
i

�
(xi � �)2+

�it
2
i

1�
i

�
Pp

i=1 ni


3i � (ai+2)
2i +

[(ni+1)ai+ (ni � 1)bi+1] 
i

�niai = 0

where


i �
�2

�2+ �2
i

ai �
�2

(xi � �)2

and

bi �
t2
i

(xi � �)2
:
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Result #1:

Monotone Convergence to Stationary

Points of the Likelihood

� For any starting values �0, �
2
0, maximize

the likelihood over the weights by solving

the cubics. (If there are multiple real roots,

choose the one which causes the biggest

increase in the likelihood.)

� Let

�21 =

Pp
i=1 
i

�
(xi � �)2+

�it
2
i

1�
i

�
Pp

i=1 ni

�1 =

Pp
i=1 
ixiPp
i=1 
i

solve for new weights, and iterate.

� This iteration, regardless of starting values,

always converges to a stationary point of

the likelihood, and increases the likelihood

at each step.
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Result #2:

Location of Stationary Values of the

Likelihood

� At a stationary point of the likelihood,

�̂2 =

Pp
i=1 


2
i (xi � �)2Pp
i=1 
i

hence

� All of the stationary points of the likeli-

hood �̂ and �̂ are within the rectangle in

the (�; �) plane given by

min
i
(xi) � ~� � max

i
(xi)

and

0 � ~� �max
i
(xi)�min

i
(xi):

� After the appropriate location-scale trans-

formation of the data, it is only necessary

to search the unit square in the (�; �) plane
for stationary values.
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Lab. 6 an Outlier for Apricot Data
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Result #3:

Location of the Roots of Cubic

Equations for Weights (
i)

� Each cubic likelihood equation has one or

three roots 
i 2 [0;1].

� A necessary condition for three roots is

that

(xi � �)2 �max(�2=qi; t
2
i =hi);

where

qi = �2� 6
p
ni sin

�
1

3

�
sin�1

�r
ni � 1

ni

�
� �

2

��

=
8

27ni

+O(n�2
i
)

and

hi =
(1� qi)

3

27(ni � 1)
=

1

27ni

+O(n�2
i
):

� These values qi and hi are the smallest for

which this is necessary.
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One-Way Models in
Interlaboratory Studies:

The Mandel-Paule Estimator
J. of Research of the NBS (1982)

� For arbitrary positive weights fwigki=1,
weighted mean is

~�=

Pp
i=1wixiPp
i=1wi

:

� Mandel-Paule estimate, �MP, of � is the
weighted mean ~� for which

wi �
1

~�2+ t2i

where ~�2 is the root (if any) of

Q =
pX

i=1

wi(xi � ~�)2 = p� 1

� Note: Q is convex decreasing on [0;1),
and Q � �2p�1 if

wi = !i �
1

�2+ �2i

14



The Mandel-Paule Algorithm and

ML/REML

Maximum-Likelihood for a linear model

Y = X�+ e;

where e � N(0;�) is equivalent to minimizing

j�j, subject to
(y �X�̂)T��1(y �X�̂) = n (1)

where �̂ is the GLS estimate of �, and n is the

number of observations.

For our one-way model, if the �2i are replaced

by s2i , then (1), an equation in �2 alone, is

pX
i=1

wi(xi � ~�)2 = p:

Had REML been used, rather than ML, then

the p on the RHS above would be a p � 1,

precisely Mandel and Paule's equation.
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Hierarchical Model With

Noninformative Priors

i = 1; : : : ; p indexes laboratories

j = 1; : : : ; ni indexes measurements

p(xijj�i; �2i ) = N(�i; �
2
i )

p(�i) / 1=�i

p(�ij�; �2) = N(�; �2)

p(�) = 1

p(�) = 1
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A Useful Probability Density

Let T� and Z denote independent Student-t

and standard normal random variables, and as-

sume that  � 0 and � > 0. Then

U = T� + Z

s
 

2

has density

f� (u; ) � 1

��=2
p
�

Z 1
0

y(�+1)=2�1e
�y
h
1+ u2

 y+�

i
p
 y+ �

dy:
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Posterior of (�; �)

� Assume �i � N(�; �2), � � p(�),

p(�) = 1, p(�i) = 1=�i.

� Then the posterior of (�; �) is

p(�; �jfxijg) / p(�)
pY

i=1

1

ti
fni�1

"
xi � �

ti
;
2�2

t2i

#
:

� The posterior of � given � = 0 is a prod-

uct of scaled t-densities centered at the xi,

since

1

ti
fni�1

"
xi � �

ti
; 0

#
=

1

ti
T 0ni�1

 
xi � �

ti

!
:

� We will take p(�) = 1, though an arbitrary

proper prior does not introduce additional

di�culties.
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Approximate Con�dence Intervals:

Apricot Fiber Data
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Small Simulation Comparing

Bayesian and Frequentist Intervals
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A Two-Way Mixed Model

(Heteroscedastic, no Interaction)

xijk = �k + �i+ eijk;

� i= 1; : : : ; p Laboratories

� j = 1; : : : ; ni Replicates

� k = 1; : : : ;m Materials

�i � N(0; �2)

eijk � N(0; �2i )

Some notation: �2i � �2i =(nim), �i � nim� 1.
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ML Equations

�k � �� � �k =

Pp
i=1(�xi�k � �xi��)=�2iPp

i=1 1=�
2
i

�� =

Pp
i=1 
i�xi��Pp
i=1 
i

�2 =

Pp
i=1 
i

�
(�xi�� � ��)2+

�it
2
i

1�
i

�
Pp

i=1 ni

Where �2i � �2i =(nim), �i � mni � 1,


i � �2=(�2+ �2i ), and

t2i �
P

j;k(xijk � �xi�k)2+ ni
P

k(�xi�k � �xi�� � �k)
2

�inim
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ML Equations (Cont'd)

The weights f
igpi=1 are roots of the cubic

equations


3i � (ai+2)
2i +

[(nim+1)ai+ �ibi+1] 
i �
niai = 0

where

ai �
�2

(�xi�� � ��)2

and

bi �
t2i

(�xi�� � ��)2
:
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An ML Iteration

1. Begin with estimates

�


(s)
i

�
.

2. Calculate the following:

�
(s+1)
k =

Pp
i=1(�xi�k��xi��)=�

2(s)
iPp

i=1 1=�
2(s)
i

��(s+1) =

Pp
i=1 


(s)
i �xi��Pp

i=1 

(s)
i

�2
(s+1)

=

Pp
i=1 


(s)
i

"
(�xi�����)2+

�it
2
i

1�

(s)
i

#
Pp
i=1 ni

3. Note that if the �k are constrained to sat-

isfy the above ML equation, then

t2i =

P
j;k(xijk � �xi��)2 �

P
k �

2
k=m

ni�im

4. Solve the cubics for new estimates 

(s+1)
i ,

and iterate.
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Some Theoretical Results for Two-Way

Mixed Model

The one-way results discussed earlier general-

ize:

� Monotone convergence

� All stationary values of likelihood in box in

(�; �;
P

k �
2
k) space.

� Exactly one weight 
i 2 [0;1], unless ith

lab an outlier and ni small

� Variances cannot be negative at solution

to likelihood equation.
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Summary

� A reparametrization of the likelihood in the

one-way heteroscedastic model leads to new

insights in likelihood and Bayesian

analyses.

� A procedure of Mandel and Paule is equiv-

alent to a modi�ed REML estimator of the

mean in an one-way heteroscedastic model.

� Many of these results carry over to two-way

models; this work is ongoing.
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